DS8831Q & DS8853Q Spectrum Analyzer Series

Key Benefits

- Portable, high-performance spectrum analyzer with up to 3 GHz range
- Enables user to quickly repair and troubleshoot problems by identifying impairments
- Detect interference from sources such as microwaves, phones, satellite and wifi to maintain HFC network at optimal performance
- Remotely configure and perform tests from anywhere, anytime through Ethernet or SCPI
- Verify terrestrial digital tv (air) channels with 8VSB-ATSC modulation
- One-button automated, analog and digital FCC proof-of-performance test
- Convenient data storage and instrument upgrade through USB
- Validate components with tracking generator

Key Features

CATV Analysis:

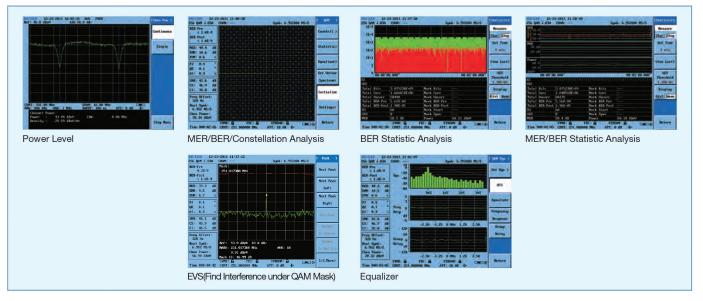
• Level, HUM, Depth of Modulation, C/N, CSO/CTB, Cross Modulation, In-Channel Frequency Response Differential Phase/Gain, Chrominance to Luminance Delay Inequality, etc.

DVB-C Analysis:

• Constellation, Power Level, MER, Pre & Post BER, EVM, EVS, MER/BER Statistical Analysis, etc.

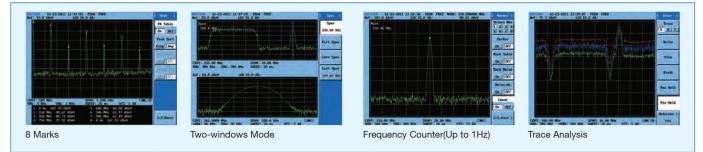
Spectrum Analysis:

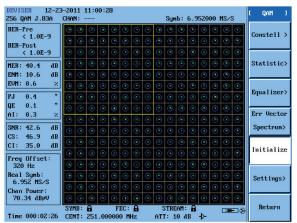
• Real-time Sweep, Fine adjustable RBW/VBW, High Accuracy, etc.

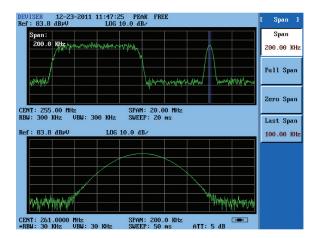

The DS8853Q/8831Q is a versatile portable QAM/Spectrum analyzer series, featuring extensive analog and digital RF signal analysis capabilities, necessary on today's modern HFC networks. With the migration towards fully digital CATV plants and the constant challenges of new services potentially interfering with HFC networks, the modern CATV maintenance technician requires easy-to-use, high performance test equipment allowing him to keep the network running at optimal performance. The DS8853Q/8831Q series provides a familiar, intuitive user interface allowing the technician to actually troubleshoot and run tests, rather than figuring out how to run the instrument.

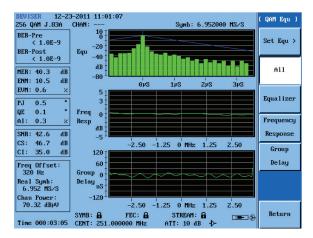
Model	D\$8853Q 3G	D\$8831Q
Spectrum Analysis	•	•
Workbench-PC Management Software	•	•
CATV	•	•
DVB-C	•	•
ASI Output	•	×
8VSB	О	×
Tracking Generator-3 GHz	О	×
Tracking Generator-1 GHz	×	О
30/100/300 Hz RBW	О	О
Spectrum Monitoring	О	О

• standard configuration * not available O optional

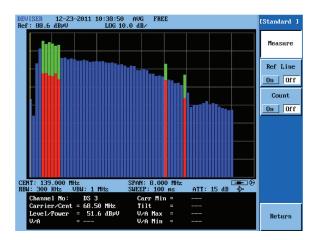

DVB-C Analysis


CATV Analysis


Conservation of the second sec	10.2004/L1.01.01.000 MMI 10.500 MMI 10.500 MMI MMI </th <th>Bit Dial Dial</th> <th>Canada Canada Ca</th>	Bit Dial	Canada Ca
Level	C/N	HUM	CSO/CTB
The second secon	1 C2-3-211-14 14 16 mm 1 C2	All of the second secon	Allow and a start of the start
Channel Sweep	Chrominance to Luminance Delay Inequaltiy	FM Demodulation	Cross-Modulation


Spectrum Analysis

"Workbench" PC Management Software



- Workbench is a data management application used to establish network communication between a PC or laptop computer and with the DS8853Q/8831Q series. Easily manage all data, tests applications and test data results.
- It performs the following tasks:
- Communication and remote control of the D\$8853Q/8831Q series via Ethernet
- Create, edit, upload and download Channel Plan
- Download and review the screen captures
- Transfer and save

	3-2011 11:27:28			[Statistic]
256 QAM J.83A 1E+5	CHAN:	Sym	b: 6.952000 MS∕S	
11.42				Measure
1E+4	فكالك أعطاه بالع			Star Stop
1E+3			all an early	Set Time
1E+2			en parlante in the fi	1 min
1E+1 1				View Last>
00:00'00	000"		00:01'00.000"	SES
ES			00.01 00.000	Threshold
SES				1.10E-03
Total Bits	3.075238E+09	Mark Bits		Display
Total Corr	1.666651E+06	Mark Corr		
Total Uncorr	58440	Mark Uncorr		Hist Wave
Total BER-Pre	5.61E-04	Mark BER-Pre		
Total BER-Post	1.90E-05	Mark BER-Post		
ES	60	Mark Start		
SES	θ	Mark Span		
MER	28.5 dB	Power	60.21 dByV	
Time 000:01:30	SYMB: A FE CENT: 251.000000		AM: B ==>⊗ dB +}-	Return

DEVISER 12-2 256 QAM J.83A	3-2011 11:28:49 CHAN:	Syn	b: 6.952000 MS∕S	[Statistic]
BER P P 5E-8		-		Measure
BO 5E-6	man	any water to get a should be		Star Stop
MER				Set Time
30 dB 20 dB				1 min
Power 60.5				View Last>
	9.000" 		00:01'00.000"	SES Threshold 1.10E-03
Total Bits	3.075238E+09	Mark Bits		Display
Total Corr	1.648518E+06	Mark Corr		
Total Uncorr	60135	Mark Uncorr		Hist Wave
Total BER-Pre	5.56E-04	Mark BER-Pre		
Total BER-Post		Mark BER-Post		
ES	60	Mark Start		
SES	θ	Mark Span		
MER	28.4 dB	Power	60.18 dBMV	
Time 000:01:05	SYMB: 🔒 FE Cent: 251.000000		AM: B ==>⊗ dB +}-	Return

Specifications

Model	D\$8831Q	D\$8853Q	
Frequency			
Frequency Range	1 MHz to 1GHz	500 kHz to 3 GHz	
Frequency Stability	+/- 2 ppm	+/- 2 ppm	
Frequency Resolution	10 Hz	1 Hz	
Counter Resolution	1 Hz	1Hz	
Sweep range	0 Hz (0 span), 1 kHz, 1000 MHz	0 Hz (0 span), 1kHz, 3000 MHz	
Sweep range	20 ms to 500 sec. (span > 0 Hz), 20 us to 500 sec. (span = 0 span)	20 ms to 250 sec. (span > 0 Hz), 20 us to 500 sec. (span = 0 span)	
RBW	1 kHz to 3 MHz (1-3 Step)	1 kHz to 3 MHz (1-3 Step)	
VBW	30 Hz to 1 MHz (1-3 Step)	30 Hz to 1 MHz (1-3 Step)	
Phase Noise Stability	 -120 dBc/Hz @ 100 kHz offset from CW signal -95 dBc/Hz @ 10 kHz offset from CW signal 	< -120 dBc/Hz @ 100 kHz offset from CW signal < -100 dBc/Hz @ 10 kHz offset from CW signa	
Amplitude			
Measurement Range	Displayed Average Noise Leve	el to Maximum Safe Input Level	
Accuracy	±1 dB @ +25°C ±5 °C	±1 dB @ +25°C ±5°C	
Resolution	0.01 dB	±1 dB @ +25°C ±5 °C	
Amplifier Frequency Range	0 dB to 55 dB, 5 dB Step	0 dB to 50 dB, 5 dB Step	
Range	1 MHz to 1000 MHz	500 kHz to 3000 MHz	
Amplifier Gain	20 dB	15 dB	
Amplifier Noise Figure	20 GB 4 dB	4 dB	
	-	4 GB +78 dBmV. 100 V DC	
Max Safe Input	+68 dBmV, 100 V DC		
Display			
Logarithm Scale	0.1 to 1 dB/div in 0.1 dB ste	p 1 to 40 dB/div in 1 dB step	
Linear Scale	10 di	visions	
Vertical Scale Unit of Measure	dBm, dBm ^v	V, dBµV, mV	
Marker Readout Resolution	0.03 dB for log scale; 0.03%	6 of ref level for linear scale	
Trace Detector	Normal, Average, Sample, Positive-Peak, Negative-Peak		
Reference Level	-98 dBmV to +29 dBmV		
Resolution Bandwidth Tolerance	< ±0.1 dB		
Input Attenuator Tolerance	< ±0.3 dB (typical)		
Amplitude Flatness	±1.0 dB		
Amplitude Range	40 dBmV to +65 dBmV, ±1.0 dB @ +25°C , ±5 °C (S/N > 30 dB)		
HUM/LFI			
Range	1% tr	20%	
Accuracy	1% to 20% ±0.5% from 1% to 5%, ±1% from 5% to 20%		
,	20.0/01/01/17/010/07/0	, 17,6 10111 0,6 10 20,6	
Depth of Modulation			
Range	40% to 95%		
Resolution		1%	
Accuracy	±1.5% (C/N > 40 dB)		
CC/N			
Optimum Input Level	32 dBmV to 37 dBmV 0 dB Attenuation, Amplifier Off	, 12 dBmV to 17 dBmV 0 dB Attenuation, Amplifier On	
Maximum	60 dB with ±1 dB Accuracy	; 65 dB with ±3 dB Accuracy	
Resolution	0.1 dB		
CTB/CSO			
	22 dPm// to 27 dPm// 0 dP Attenuation w/ Arras lifer Of	ff 0 dPm// to 7 dPm// 0 dP Attenuation w/ Amplifier Or	
Optimum Input Level		ff, 2 dBmV to 7 dBmV, 0 dB Attenuation w/ Amplifier On	
Maximum Range	63 dB ±1.5 dB Accuracy (78 channels), 70 dB ±4.0 dB Accuracy (78 channels)		
Resolution	0.1 dB		
Range	-45 dB to -65 dB		
Accuracy	± 2.0 dB for Cross Modulation @ < 55 dB, CCN > 40 dB, ± 4.5 dB for Cross Modulation @ < 60 dB, CCN > 40 dB		
Resolution	0.1	dB	
In Chn. Freq Resp			
Range	±12 dB		
Accuracy	±0.2 dB		
Resolution	0.1 dB		
	±2%		
	±2	2%	
Differential Phase Accuracy Differential Gain Accuracy		2% 3 °	
Differential Phase Accuracy	±		

Specifications (continued)

Model	D\$8831Q	D\$8853Q	
QAM/DVB-C			
Modulation Types	16/32/64/128/256 QAM, QPSK (ITU-T J.83 Annex A/B/C)		
Interleaving	Up to128 × 4 in Annex	B, 12 × 17 in Annex A/C	
Constellation Display	QPSK, 16/32/64/128/256 C	QAM with Zoom capability	
Adaptive Equalizer Display	8 FFE taps,	24 DFE taps	
Digital Chn. Power			
Amplitude Range	-30 dBmV t	o +60 dBmV	
Resolution	0.1	dB	
Accuracy	±1.0 dB @ (25°C ±5 °C	C, C/N > 20 dB) Typical	
Measurement Bandwidth	200 kHz to	o 999 MHz	
MER			
Range	>4	3 dB	
Accuracy	±0.5 dB (22 to 30 dB); ±1.0 dB (30 to 35 dB); ±1.8 dB (35 to 43dB)		
BER	2 × 10E-3 to 1 × 10E-12		
Error Vector Magnitude	< 0.65%		
Statistical Mode	1 to 4320 Minutes		
Symbol Rate	1 to 7 Ms/Sec		
Power Supply			
Battery Type	14.8 V / 6 Ah Rechargeable Lithium-Ion 14.8 V / 8 Ah Rechargeable Lithium-		
External AC Adapter	19 VDC / 3.42 A		
Charge Time	5 Hours 6 Hours		
Operational Time	>3 Hours; >2.5 Hours (Including Optional Tracking Generator)		
General			
Operating Temperature	0 to 50 °C (32 to 122 °F)		
Storage Temperature	-20 to +55 °C (-4 to 131 °F)		
Dimension (W×H×L)	360 mm × 180 mm × 350 mm	360 mm ×180 mm × 360 mm	
Weight (With Battery)	9 kg 10 kg		
Display	16 cm (6.4 inches) TFT Color LCD 19 cm (7.5 inches) TFT Color LCD		
Display Resolution	640 X 480 Pixels		

©2016 Deviser Instruments Incorporated. 780 Montague Expressway, Suite 701, San Jose, CA 95131. All rights reserved. Specifications subject to change without notice. All product and company names are trademarks of their respective corporations. Deviser Instruments manufacturing facilities are ISO 9001 certified. Do not reproduce, redistribute, or repost without written permission from Deviser Instruments. DS8831Q/DS8853Q 160916